A unary function that maps from a scalar-quantity to a scalar-quantity.
(<=> (Unary-Scalar-Function-Quantity ?X) (And (Function-Quantity ?X) (Unary-Function ?X) (Domain ?X Scalar-Quantity) (Range ?X Scalar-Quantity)))
(Unary-Function ?X) (Function-Quantity ?X)
(<= (Range $X Scalar-Quantity) (Unary-Scalar-Function-Quantity $X)) (<= (Domain $X Scalar-Quantity) (Unary-Scalar-Function-Quantity $X)) (<=> (Unary-Scalar-Function-Quantity ?X) (And (Function-Quantity ?X) (Unary-Function ?X) (Domain ?X Scalar-Quantity) (Range ?X Scalar-Quantity))) (=> (And (Unary-Scalar-Function-Quantity ?X) (Unary-Scalar-Function-Quantity ?Y) (+ ?X ?Y ?Z)) (Unary-Scalar-Function-Quantity ?Z)) (=> (And (Unary-Scalar-Function-Quantity ?X) (Unary-Scalar-Function-Quantity ?Y) (* ?X ?Y ?Z)) (Unary-Scalar-Function-Quantity ?Z)) (=> (And (Unary-Scalar-Function-Quantity ?X) (Recip ?X ?Y)) (Unary-Scalar-Function-Quantity ?Y)) (=> (And (Unary-Scalar-Function-Quantity ?X) (Real-Number ?R) (Expt ?X ?R ?Z)) (Unary-Scalar-Function-Quantity ?Z)) (=> (The-Identity-Unary-Scalar-Function-For-Domain $X $Y) (Unary-Scalar-Function-Quantity $Y)) (Nth-Domain The-Zero-Unary-Scalar-Function-For-Dimension 3 Unary-Scalar-Function-Quantity) (=> (Deriv $X $Y) (Unary-Scalar-Function-Quantity $Y)) (=> (Deriv $X $Y) (Unary-Scalar-Function-Quantity $X)) (Forall (?F ?G ?R) (=> (And (Unary-Scalar-Function-Quantity ?F) (Unary-Scalar-Function-Quantity ?G) (Real-Number ?R)) (And (= (Deriv (+ ?F ?G)) (+ (Deriv ?F) (Deriv ?G))) (= (Deriv (* ?F ?G)) (+ (* (Deriv ?F) ?G) (* ?F (Deriv ?G)))) (= (Deriv (Expt ?F ?R)) (* ?R (Expt (Deriv ?F) (1- ?R))))))) (<=> (Time-Dependent-Quantity ?X) (And (Unary-Scalar-Function-Quantity ?X) (Continuous ?X) (Subclass-Of (Exact-Domain ?X) Time-Quantity)))