Function MAGNITUDE


Slots on this function:

Documentation:
The magnitude of a constant-quantity is a numeric value for the quantity given in terms of some unit-of-measure. For example, the magnitude of the quantity 2 kilometers in the unit-of-measure meter is the real number 2000. The unit-of-measure and quantity must be of the same physical-dimension, and the resulting value is a dimensionless-quantity. The type of the resulting quantity is dependent on the type of the original quantity. The magnitude of a scalar-quantity is a real-number, and the magnitude of a vector-quantity is a numeric-vector. In general, then, the magnitude function converts a quantity with dimension into a normal mathematical object.

Units of measure are scalar quantities, and magnitude is defined in terms of scalar multiplication. The magnitude of a quantity in a given unit times that unit is equal to the original quantity. This holds for all kinds of tensors, including real-numbers and vectors. For scalar quantities, one can think of the magnitude as the ratio of a quantity to the unit quantity. See the definition of the multiplication operator * for the various sorts of quantities. The properties of * that hold for all physical-quantities are defined in this theory.

There is no magnitude for a function-quantity. Instead, the value of a function-quantity on some input is a quantity which may in turn be a constant-quantity for which the magnitude function is defined. See the definition of value-at.

Instance-Of: Function
Arity: 3

Equivalence Axioms:

(<=> (Magnitude ?Q ?Unit)
     (And (Constant-Quantity ?Q)
          (Unit-Of-Measure ?Unit)
          (Dimensionless-Quantity ?Mag)
          (Compatible-Quantities ?Q ?Unit)
          (Defined (* ?Mag ?Unit))
          (= (* ?Mag ?Unit) ?Q)))


Axioms:

(Nth-Domain Magnitude 3 Dimensionless-Quantity)

(Nth-Domain Magnitude 2 Unit-Of-Measure)

(Nth-Domain Magnitude 1 Constant-Quantity)

(Forall (?Q ?Unit ?Mag)
        (=> (And (Constant-Quantity ?Q)
                 (Unit-Of-Measure ?Unit)
                 (Dimensionless-Quantity ?Mag)
                 (Defined (* ?Mag ?Q)))
            (= (Magnitude (* ?Mag ?Q) ?Unit)
               (* ?Mag (Magnitude ?Q ?Unit)))))


Other Related Axioms:

(Forall (?Q ?Unit ?Mag)
        (=> (And (Constant-Quantity ?Q)
                 (Unit-Of-Measure ?Unit)
                 (Dimensionless-Quantity ?Mag)
                 (Defined (* ?Mag ?Q)))
            (= (Magnitude (* ?Mag ?Q) ?Unit)
               (* ?Mag (Magnitude ?Q ?Unit)))))

(=> (= (Magnitude ?Q ?Unit) ?Mag) (= (* ?Mag ?Unit) ?Q))

(=> (= (Magnitude ?Q ?Unit) ?Mag) (Defined (* ?Mag ?Unit)))

(=> (= (Magnitude ?Q ?Unit) ?Mag) (Compatible-Quantities ?Q ?Unit))

(=> (= (Magnitude ?Q ?Unit) ?Mag) (Dimensionless-Quantity ?Mag))

(=> (= (Magnitude ?Q ?Unit) ?Mag) (Unit-Of-Measure ?Unit))

(=> (= (Magnitude ?Q ?Unit) ?Mag) (Constant-Quantity ?Q))

(=> (And (Constant-Quantity ?X) (Constant-Quantity ?Y))
    (<=> (+ ?X ?Y ?Z)
         (And (Constant-Quantity ?Z)
              (Forall (?Unit)
                      (=> (Unit-Of-Measure ?Unit)
                          (= (+ (Magnitude ?X ?Unit)
                                (Magnitude ?Y ?Unit))
                             (Magnitude ?Z ?Unit)))))))

(Forall (@Args)
        (<=> (And (Holds ?R @Args)
                  (=> (Item ?Q (Listof @Args))
                      (Constant-Quantity ?Q)))
             (Forall (?Unit ?Q)
                     (=> (And (Unit-Of-Measure ?Unit)
                              (=> (Item ?Q (Listof @Args))
                                  (Compatible-Quantities ?Q ?Unit)))
                         (Member (Map (Lambda (?Q)
                                              (Magnitude ?Q ?Unit))
                                      (Listof @Args))
                                 ?R)))))

(<=> (Relation-Extended-To-Quantities ?R)
     (And (Relation ?R)
          (Forall (@Args)
                  (<=> (And (Holds ?R @Args)
                            (=> (Item ?Q (Listof @Args))
                                (Constant-Quantity ?Q)))
                       (Forall (?Unit ?Q)
                               (=> (And (Unit-Of-Measure ?Unit)
                                        (=> (Item ?Q (Listof @Args))
                                            (Compatible-Quantities 
                                                ?Q
                                                ?Unit)))
                                   (Member (Map (Lambda 
                                                    (?Q)
                                                    (Magnitude ?Q
                                                               ?Unit))
                                                (Listof @Args))
                                           ?R)))))))

(Forall (?Other-Unit)
        (=> (And (Unit-Of-Measure ?Other-Unit)
                 (Compatible-Quantities ?U ?Other-Unit))
            (And (Real-Number (Magnitude ?U ?Other-Unit))
                 (Positive (Magnitude ?U ?Other-Unit)))))

(<=> (Unit-Of-Measure ?U)
     (And (Constant-Quantity ?U)
          (Forall (?Other-Unit)
                  (=> (And (Unit-Of-Measure ?Other-Unit)
                           (Compatible-Quantities ?U ?Other-Unit))
                      (And (Real-Number (Magnitude ?U ?Other-Unit))
                           (Positive (Magnitude ?U ?Other-Unit)))))))

(<- (Magnitude-In-System-Of-Units ?Q ?System)
    (Magnitude ?Q (Standard-Unit ?System (Quantity.Dimension ?Q))))


Notes: