The class of quantities which are n-dimensional vectors (first order tensor-quantities). Each vector has an associated spatial dimension and an associated physical dimension. Each vector-quantity can be decomposed into scalar components for a given orthonormal basis of the proper dimension. The physical-dimension of a scalar component of the vector-quantity is equivalent to the physical-dimension of the vector-quantity.
(<=> (Vector-Quantity ?V) (And (Constant-Quantity ?V) (Tensor-Quantity ?V) (= (Tensor-Order ?V) 1) (Forall (?B ?I) (=> (And (Orthonormal-Basis ?B) (= (Basis.Dimension ?B) (Spatial.Dimension ?V)) (Positive-Integer ?I) (=< ?I (Spatial.Dimension ?V))) (And (Defined (Vector-Component ?V ?I ?B)) (= (Quantity.Dimension (Vector-Component ?V ?I ?B)) (Quantity.Dimension ?V))))) (Forall (?U) (=> (And (Unit-Of-Measure ?U) (= (Quantity.Dimension ?U) (Quantity.Dimension ?V))) (Numeric-Tensor (Magnitude ?V ?U))))))
(Forall (?U) (=> (And (Unit-Of-Measure ?U) (= (Quantity.Dimension ?U) (Quantity.Dimension ?V))) (Numeric-Tensor (Magnitude ?V ?U)))) (Forall (?B ?I) (=> (And (Orthonormal-Basis ?B) (= (Basis.Dimension ?B) (Spatial.Dimension ?V)) (Positive-Integer ?I) (=< ?I (Spatial.Dimension ?V))) (And (Defined (Vector-Component ?V ?I ?B)) (= (Quantity.Dimension (Vector-Component ?V ?I ?B)) (Quantity.Dimension ?V))))) (Tensor-Quantity ?V) (Constant-Quantity ?V)
(<= (Tensor-Order $X 1) (Vector-Quantity $X)) (<=> (Vector-Quantity ?V) (And (Constant-Quantity ?V) (Tensor-Quantity ?V) (= (Tensor-Order ?V) 1) (Forall (?B ?I) (=> (And (Orthonormal-Basis ?B) (= (Basis.Dimension ?B) (Spatial.Dimension ?V)) (Positive-Integer ?I) (=< ?I (Spatial.Dimension ?V))) (And (Defined (Vector-Component ?V ?I ?B)) (= (Quantity.Dimension (Vector-Component ?V ?I ?B)) (Quantity.Dimension ?V))))) (Forall (?U) (=> (And (Unit-Of-Measure ?U) (= (Quantity.Dimension ?U) (Quantity.Dimension ?V))) (Numeric-Tensor (Magnitude ?V ?U)))))) (<=> (Unit-Vec ?V) (And (Vector-Quantity ?V) (= (Quantity.Dimension ?V) Identity-Dimension) (= (Dot ?V ?V) 1))) (Nth-Domain Vector-Component 1 Vector-Quantity) (=> (= (Vector-Component ?V ?I ?B) ?S) (Vector-Quantity ?V)) (Nth-Domain The-Vector-Quantity 3 Vector-Quantity) (=> (= (The-Vector-Quantity ?M ?B) ?V) (Vector-Quantity ?V)) (=> (And (Vector-Quantity ?X) (Vector-Quantity ?Y)) (=> (+ ?X ?Y ?Z) (And (Vector-Quantity ?Z) (Forall (?B ?I) (=> (And (Orthonormal-Basis ?B) (= (Spatial.Dimension ?X) (Basis.Dimension ?B)) (Positive-Integer ?I) (=< ?I (Spatial.Dimension ?X))) (= (Vector-Component ?Z ?I ?B) (+ (Vector-Component ?X ?I ?B) (Vector-Component ?Y ?I ?B)))))))) (=> (And (Vector-Quantity ?X) (- ?X ?Y)) (And (Vector-Quantity ?Y) (= (+ ?X ?Y) (The-Zero-Vector-Of-Type (Quantity.Dimension ?X) (Spatial.Dimension ?X))))) (=> (And (Vector-Quantity ?V1) (Dyad ?T1)) (<=> (Dot ?V1 ?T1 ?V) (And (Vector-Quantity ?V) (Forall (?B) (= ?T (The-Vector-Quantity (* (Tensor-To-Matrix ?V1 ?B) (Tensor-To-Matrix ?T1 ?B)) ?B))) (Forall (?B ?I ?J) (=> (= (Basis.Dimension ?B) (Spatial.Dimension ?V1)) (= ?T (Summation (Lambda (?I) (* (Basis.Vec ?B ?I) (Summation (Lambda (?J) (* (Vector-Component ?V1 ?J ?B) (Dyad-Component ?T1 ?J ?I ?B))) 1 (Spatial.Dimension ?V1)))) 1 (Spatial.Dimension ?V1)))))))) (=> (And (Dyad ?T1) (Vector-Quantity ?V1)) (<=> (Dot ?T1 ?V1 ?V) (And (Vector-Quantity ?V) (Forall (?B) (= ?T (The-Vector-Quantity (Transpose (* (Tensor-To-Matrix ?T1 ?B) (Transpose (Tensor-To-Matrix ?V1 ?B)))) ?B))) (Forall (?B ?I ?J) (=> (= (Basis.Dimension ?B) (Spatial.Dimension ?V1)) (= ?T (Summation (Lambda (?I) (* (Basis.Vec ?B ?I) (Summation (Lambda (?J) (* (Dyad-Component ?T1 ?I ?J ?B) (Vector-Component ?V1 ?J ?B))) 1 (Spatial.Dimension ?V1)))) 1 (Spatial.Dimension ?V1)))))))) (=> (And (Vector-Quantity ?V1) (Vector-Quantity ?V2)) (<=> (Dot ?V1 ?V2 ?S) (And (Scalar-Quantity ?S) (Forall (?B) (= ?S (Value (* (Tensor-To-Matrix ?V1 ?B) (Transpose (Tensor-To-Matrix ?V2 ?B))) 11))) (Forall (?B ?J) (=> (= (Basis.Dimension ?B) (Spatial.Dimension ?V1)) (= ?S (Summation (Lambda (?J) (* (Vector-Component ?V1 ?J ?B) (Vector-Component ?V2 ?J ?B))) 1 (Spatial.Dimension ?V1)))))))) (=> (And (Vector-Quantity ?V1) (Scalar-Quantity ?S)) (= (* ?V1 ?S) (* ?S ?V1))) (=> (And (Scalar-Quantity ?S) (Vector-Quantity ?V1) (* ?S ?V1 ?V)) (And (Vector-Quantity ?V) (= (Spatial.Dimension ?V1) (Spatial.Dimension ?V)) (Forall (?B ?I) (=> (= (Basis.Dimension ?B) (Spatial.Dimension ?V1)) (= (Vector-Component ?V ?I ?B) (* ?S (Vector-Component ?V1 ?I ?B))))))) (Nth-Domain The-Zero-Vector-Of-Type 3 Vector-Quantity) (=> (= (The-Zero-Vector-Of-Type ?Spatdim ?Physdim) ?V0) (Forall (?V) (=> (Vector-Quantity ?V) (= (Dot ?V ?V0) (The-Zero-Scalar-For-Dimension ?Physdim))))) (<- (Vector-Quantities-Of-Dimensions ?Physim ?Spatdim) (If (And (Physical-Dimension ?Physim) (Positive-Integer ?Spatdim)) (Kappa (?Vq) (And (Vector-Quantity ?Vq) (= (Spatial.Dimension ?Vq) ?Spatdim) (= (Quantity.Dimension ?Vq) ?Physim)))))