The class of second order tensors (aka tensors). Given an orthornormal basis a dyad can be decomposed into scalar components. These components can be represented as a square matrix. The matrix is not unique but it a 'view' of the tensor for a particular basis.
(<=> (Dyad ?D) (And (Constant-Quantity ?D) (Tensor-Quantity ?D) (= (Tensor-Order ?D) 2) (Forall (?B ?I ?J) (=> (And (Orthonormal-Basis ?B) (= (Basis.Dimension ?B) (Spatial.Dimension ?D)) (Positive-Integer ?I) (=< ?I (Spatial.Dimension ?D)) (Positive-Integer ?J) (=< ?J (Spatial.Dimension ?D))) (And (Defined (Dyad-Component ?D ?I ?J ?B)) (= (Quantity.Dimension (Dyad-Component ?D ?I ?J ?B)) (Quantity.Dimension ?D))))) (Forall (?U) (=> (And (Unit-Of-Measure ?U) (= (Quantity.Dimension ?U) (Quantity.Dimension ?D))) (Numeric-Tensor (Magnitude ?D ?U))))))
(Forall (?U) (=> (And (Unit-Of-Measure ?U) (= (Quantity.Dimension ?U) (Quantity.Dimension ?D))) (Numeric-Tensor (Magnitude ?D ?U)))) (Forall (?B ?I ?J) (=> (And (Orthonormal-Basis ?B) (= (Basis.Dimension ?B) (Spatial.Dimension ?D)) (Positive-Integer ?I) (=< ?I (Spatial.Dimension ?D)) (Positive-Integer ?J) (=< ?J (Spatial.Dimension ?D))) (And (Defined (Dyad-Component ?D ?I ?J ?B)) (= (Quantity.Dimension (Dyad-Component ?D ?I ?J ?B)) (Quantity.Dimension ?D))))) (Tensor-Quantity ?D) (Constant-Quantity ?D)
(<= (Tensor-Order $X 2) (Dyad $X)) (<=> (Dyad ?D) (And (Constant-Quantity ?D) (Tensor-Quantity ?D) (= (Tensor-Order ?D) 2) (Forall (?B ?I ?J) (=> (And (Orthonormal-Basis ?B) (= (Basis.Dimension ?B) (Spatial.Dimension ?D)) (Positive-Integer ?I) (=< ?I (Spatial.Dimension ?D)) (Positive-Integer ?J) (=< ?J (Spatial.Dimension ?D))) (And (Defined (Dyad-Component ?D ?I ?J ?B)) (= (Quantity.Dimension (Dyad-Component ?D ?I ?J ?B)) (Quantity.Dimension ?D))))) (Forall (?U) (=> (And (Unit-Of-Measure ?U) (= (Quantity.Dimension ?U) (Quantity.Dimension ?D))) (Numeric-Tensor (Magnitude ?D ?U)))))) (Nth-Domain Dyad-Component 1 Dyad) (=> (= (Dyad-Component ?T ?I ?J ?Basis) ?S) (Dyad ?T)) (Nth-Domain The-Dyad 3 Dyad) (=> (= (The-Dyad ?M ?B) ?T) (Dyad ?T)) (=> (And (Dyad ?X) (Dyad ?Y)) (=> (+ ?X ?Y ?Z) (And (Dyad ?Z) (Forall (?B ?I ?J) (=> (And (Orthonormal-Basis ?B) (= (Spatial.Dimension ?X) (Basis.Dimension ?B)) (Positive-Integer ?I) (Positive-Integer ?J) (=< ?I (Spatial.Dimension ?X)) (=< ?J (Spatial.Dimension ?X))) (= (Dyad-Component ?Z ?I ?J ?B) (+ (Dyad-Component ?X ?I ?J ?B) (Dyad-Component ?Y ?I ?J ?B)))))))) (=> (And (Vector-Quantity ?V1) (Dyad ?T1)) (<=> (Dot ?V1 ?T1 ?V) (And (Vector-Quantity ?V) (Forall (?B) (= ?T (The-Vector-Quantity (* (Tensor-To-Matrix ?V1 ?B) (Tensor-To-Matrix ?T1 ?B)) ?B))) (Forall (?B ?I ?J) (=> (= (Basis.Dimension ?B) (Spatial.Dimension ?V1)) (= ?T (Summation (Lambda (?I) (* (Basis.Vec ?B ?I) (Summation (Lambda (?J) (* (Vector-Component ?V1 ?J ?B) (Dyad-Component ?T1 ?J ?I ?B))) 1 (Spatial.Dimension ?V1)))) 1 (Spatial.Dimension ?V1)))))))) (=> (And (Dyad ?T1) (Vector-Quantity ?V1)) (<=> (Dot ?T1 ?V1 ?V) (And (Vector-Quantity ?V) (Forall (?B) (= ?T (The-Vector-Quantity (Transpose (* (Tensor-To-Matrix ?T1 ?B) (Transpose (Tensor-To-Matrix ?V1 ?B)))) ?B))) (Forall (?B ?I ?J) (=> (= (Basis.Dimension ?B) (Spatial.Dimension ?V1)) (= ?T (Summation (Lambda (?I) (* (Basis.Vec ?B ?I) (Summation (Lambda (?J) (* (Dyad-Component ?T1 ?I ?J ?B) (Vector-Component ?V1 ?J ?B))) 1 (Spatial.Dimension ?V1)))) 1 (Spatial.Dimension ?V1)))))))) (=> (And (Dyad ?T1) (Dyad ?T2)) (<=> (Dot ?T1 ?T2 ?T) (And (Dyad ?T) (Forall (?B) (= ?T (The-Dyad (* (Tensor-To-Matrix ?T1 ?B) (Tensor-To-Matrix ?T2 ?B)) ?B))) (Forall (?B ?I ?J) (=> (= (Basis.Dimension ?B) (Spatial.Dimension ?T1)) (= ?T (Summation (Lambda (?I) (Summation (Lambda (?J) (* (* (Basis.Vec ?B ?I) (Basis.Vec ?B ?J)) (* (Dyad-Component ?T1 ?I ?J ?B) (Dyad-Component ?T2 ?J ?I ?B)))) 1 (Spatial.Dimension ?T1))) 1 (Spatial.Dimension ?T1)))))))) (Nth-Domain The-Zero-Dyad-Of-Type 3 Dyad) (=> (= (The-Zero-Dyad-Of-Type ?Spatdim ?Physdim) ?V0) (Forall (?V) (=> (Dyad ?V) (= (Dot ?V ?V0) (The-Zero-Scalar-For-Dimension ?Physdim))))) (<- (Dyad-Of-Dimensions ?Physim ?Spatdim) (If (And (Physical-Dimension ?Physim) (Positive-Integer ?Spatdim)) (Kappa (?Vq) (And (Dyad ?Vq) (= (Spatial.Dimension ?Vq) ?Spatdim) (= (Quantity.Dimension ?Vq) ?Physim)))))