Function relating frames in space. Returns a direction cosine matrix. An important property of orientation is the ability to 'chain' orientations through multiplication, (orientation ?f1 ?f3) = (orientation ?f1 ?f2) * (orientation ?f2 ?f3).
(Nth-Domain Orientation 3 3d-Direction-Cosine) (Nth-Domain Orientation 2 3d-Frame) (Nth-Domain Orientation 1 3d-Frame) (= (Orientation ?F1 ?F3) (* (Orientation ?F1 ?F2) (Orientation ?F2 ?F3))) (=> (Orientation ?F1 ?F2 ?Dircos) (And (Forall (?V) (=> (3d-Vector-Quantity ?V) (= (Tensor-To-Matrix ?V ?F1) (* ?Dircos (Tensor-To-Matrix ?V ?F2))))) (Forall (?Dyad) (=> (3d-Dyad ?Dyad) (= (Tensor-To-Matrix ?Dyad ?F1) (* (Inverse ?Dircos) (* (Tensor-To-Matrix ?Dyad ?F2) ?Dircos)))))))