Function relating frames in space. Returns a direction cosine matrix. An important property of orientation is the ability to 'chain' orientations through multiplication, (orientation ?f1 ?f3) = (orientation ?f1 ?f2) * (orientation ?f2 ?f3).
(Nth-Domain Orientation 3 3d-Direction-Cosine)
(Nth-Domain Orientation 2 3d-Frame)
(Nth-Domain Orientation 1 3d-Frame)
(= (Orientation ?F1 ?F3)
(* (Orientation ?F1 ?F2) (Orientation ?F2 ?F3)))
(=> (Orientation ?F1 ?F2 ?Dircos)
(And (Forall (?V)
(=> (3d-Vector-Quantity ?V)
(= (Tensor-To-Matrix ?V ?F1)
(* ?Dircos (Tensor-To-Matrix ?V ?F2)))))
(Forall (?Dyad)
(=> (3d-Dyad ?Dyad)
(= (Tensor-To-Matrix ?Dyad ?F1)
(* (Inverse ?Dircos)
(* (Tensor-To-Matrix ?Dyad ?F2) ?Dircos)))))))