Defines the basic vocabulary for describing algebraic operators, domains, and structures such as fields, rings, and groups.
Frame-Ontology Kif-Relations Kif-Sets Kif-Lists Kif-Numbers
Physical-Quantities Unary-Scalar-Functions Cml Thermodynamics Dme Thermodynamics Standard-Units Simple-Bikes Cml ... Vt-Design Simple-Bikes Vt-Domain Vt-Example Unary-Scalar-Functions ... Scalar-Quantities Vt-Design ... Vector-Quantities
The following constants were used from included theories:
All constants that were mentioned were defined.
A function is a binary operator on a domain if it is closed on the domain, that is, it is defined for all pairs of objects that are instances of the domain and its value on all such pairs is an instance of the domain.
(<=> (Binary-Operator-On ?Function ?Domain) (And (Binary-Function ?Function) (Forall (?X ?Y) (=> (And (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) ) (Instance-Of (Value ?Function ?X ?Y) ?Domain) ))))
(<=> (Associative ?Op ?Domain) (Forall (?X ?Y ?Z) (=> (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) (Instance-Of ?Z ?Domain) (= (Value ?Op ?X (Value ?Op ?Y ?Z)) (Value ?Op (Value ?Op ?X ?Y) ?Z) ))))
(<=> (Commutative ?Op ?Domain) (Forall (?X ?Y) (=> (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) (= (Value ?Op ?X ?Y) (Value ?Op ?Y ?X)) )))
(<=> (Invertible ?Op ?Id ?Domain) (Forall (?X) (=> (Instance-Of ?X ?Domain) (Exists (?Y) (And (Instance-Of ?Y ?Domain) (= (Value ?Op ?X ?Y) ?Id) (= (Value ?Op ?Y ?X) ?Id) )))))
(<=> (Distributes ?Op ?G ?Domain) (And (Binary-Operator-On ?Op ?Domain) (Binary-Operator-On ?G ?Domain) (Forall (?X ?Y ?Z) (=> (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) (Instance-Of ?Z ?Domain) (= (Value ?Op (Value ?G ?X ?Y) ?Z) (Value ?G (Value ?Op ?X ?Z) (Value ?Op ?Y ?Z) ))))))
An object ?id is the identity element for binary operator ?o over domain ?d iff for every instance ?x of ?d, applying ?o to ?x and ?id results in ?x.
(<=> (Identity-Element-For ?Id ?Op ?Domain) (And (Instance-Of ?Id ?Domain) (Binary-Operator-On ?Op ?Domain) (Forall (?X) (=> (Instance-Of ?X ?Domain) (= (Value ?Op ?Id ?X) ?X) ))))
(<=> (Reflexive ?Rel ?Domain) (And (Binary-Relation ?Rel) (Forall (?X) (=> (Instance-Of ?X ?Domain) (Holds ?Rel ?X ?X)) )))
(<=> (Irreflexive ?Rel ?Domain) (And (Binary-Relation ?Rel) (Forall (?X) (=> (Instance-Of ?X ?Domain) (Not (Holds ?Rel ?X ?X)) ))))
(<=> (Symmetric ?Rel ?Domain) (And (Binary-Relation ?Rel) (Forall (?X ?Y) (=> (And (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) (Holds ?Rel ?X ?Y) ) (Holds ?Rel ?Y ?X) ))))
(<=> (Asymmetric ?Rel ?Domain) (And (Binary-Relation ?Rel) (Forall (?X ?Y) (=> (And (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) (Holds ?Rel ?X ?Y) ) (Not (Holds ?Rel ?Y ?X)) ))))
(<=> (Antisymmetric ?Rel ?Domain) (And (Binary-Relation ?Rel) (Forall (?X ?Y) (=> (And (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) (Holds ?Rel ?X ?Y) (Holds ?Rel ?Y ?X) ) (= ?X ?Y) ))))
(<=> (Trichotomizes ?Rel ?Domain) (And (Binary-Relation ?Rel) (Forall (?X ?Y) (=> (And (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) ) (Or (Holds ?Rel ?X ?Y) (= ?X ?Y) (Holds ?Rel ?Y ?X) )))))
(<=> (Transitive ?Rel ?Domain) (And (Binary-Relation ?Rel) (Forall (?X ?Y ?Z) (=> (And (Instance-Of ?X ?Domain) (Instance-Of ?Y ?Domain) (Instance-Of ?Z ?Domain) (Holds ?Rel ?X ?Y) (Holds ?Rel ?Y ?Z) ) (Holds ?Rel ?X ?Z) ))))
(<=> (Semigroup ?Domain ?Op ?Id) (And (Binary-Operator-On ?Op ?Domain) (Associative ?Op ?Domain) (Identity-Element-For ?Id ?Op ?Domain) ))
(<=> (Abelian-Semigroup ?Domain ?Op ?Id) (And (Semigroup ?Domain ?Op ?Id) (Commutative ?Op ?Domain)) )
(<=> (Group ?Domain ?Op ?Id) (And (Binary-Operator-On ?Op ?Domain) (Associative ?Op ?Domain) (Identity-Element-For ?Id ?Op ?Domain) (Invertible ?Op ?Id ?Domain) ))
(<=> (Abelian-Group ?Domain ?Op ?Id) (And (Group ?Domain ?Op ?Id) (Commutative ?Op ?Domain)) )
(<=> (Ring ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (And (Abelian-Group ?Domain ?Plus-Op ?Zero-Id) (Semigroup ?Domain ?Mult-Op ?One-Id) (Distributes ?Mult-Op ?Plus-Op ?Domain) ))
(<=> (Commutative-Ring ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (And (Abelian-Group ?Domain ?Plus-Op ?Zero-Id) (Abelian-Semigroup ?Domain ?Mult-Op ?One-Id) (Distributes ?Mult-Op ?Plus-Op ?Domain) ))
(<=> (Integral-Domain ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (And (Commutative-Ring ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (Binary-Operator-On ?Mult-Op (Kappa (?X) (And (Instance-Of ?X ?Domain) (/= ?X ?Zero-Id) )))))
(<=> (Division-Ring ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (And (Ring ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (Group (Kappa (?X) (And (Instance-Of ?X ?Domain) (/= ?X ?Zero-Id) )) ?Mult-Op ?One-Id)))
(<=> (Field ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (And (Division-Ring ?Domain ?Plus-Op ?Zero-Id ?Mult-Op ?One-Id) (Commutative ?Plus-Op ?Domain) ))
(<=> (Partial-Order ?Domain ?Rel) (And (Irreflexive ?Rel ?Domain) (Asymmetric ?Rel ?Domain) (Transitive ?Rel ?Domain) ))
(<=> (Linear-Order ?Domain ?Rel) (And (Irreflexive ?Rel ?Domain) (Asymmetric ?Rel ?Domain) (Transitive ?Rel ?Domain) (Trichotomizes ?Rel ?Domain) ))
Abstract linear or vector space of arbitrary dimension. Defines operations on vectors over a scalar field.
(Nth-Domain Linear-Space 2 Class) (Nth-Domain Linear-Space 1 Class) (<=> (Linear-Space ?Scalar-Domain ?Vector-Domain ?S-Zero ?S-One ?V-Zero ?Mult ?Add) (And (Class ?Scalar-Domain) (Class ?Vector-Domain) (Field ?Scalar-Domain ?Add ?S-Zero ?Mult ?S-One) (Abelian-Group ?Vector-Domain ?Add ?V-Zero) (Forall (?S ?V) (=> (And (Instance-Of ?S ?Scalar-Domain) (Instance-Of ?V ?Vector-Domain) ) (Instance-Of (Value ?Mult ?S ?V) ?Vector-Domain))) (Forall (?S ?V1 ?V2) (=> (And (Instance-Of ?S ?Scalar-Domain) (Instance-Of ?V1 ?Vector-Domain) (Instance-Of ?V2 ?Vector-Domain) ) (= (Value ?Mult ?S (Value ?Add ?V1 ?V2)) (Value ?Add (Value ?Mult ?S ?V1) (Value ?Mult ?S ?V2) )))) (Forall (?S1 ?S2 ?V) (=> (And (Instance-Of ?S1 ?Scalar-Domain) (Instance-Of ?S2 ?Scalar-Domain) (Instance-Of ?V ?Vector-Domain) ) (= (Value ?Mult (Value ?Add ?S1 ?S2) ?V) (Value ?Add (Value ?Mult ?S1 ?V) (Value ?Mult ?S2 ?V) )))) (Forall (?S1 ?S2 ?V) (=> (And (Instance-Of ?S1 ?Scalar-Domain) (Instance-Of ?S2 ?Scalar-Domain) (Instance-Of ?V ?Vector-Domain) ) (= (Value ?Mult (Value ?Mult ?S1 ?S2) ?V) (Value ?Mult ?S1 (Value ?Mult ?S2 ?V)) ))) (Forall (?V) (=> (Instance-Of ?V ?Vector-Domain) (And (= (Value ?Mult ?S-One ?V) ?V) (= (Value ?Mult ?S-Zero ?V) ?V-Zero) )))))