Reference: Hailperin, M. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statiscally Periodic Loads. Ph.D, Stanford University, 1993.
Abstract: This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average laod estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate esimtation of the global system loading, resulting in fewer object migrations than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive load-balancing methods. Results from a preliminary analysis of another system and from simulation with a synthetic load provide some evidence of more general applicability.
Notes: STAN-CS-94-1514.
Full paper available as ps.