KSL-88-63

An Analysis of Categorical and Quantitative Methods for Planning under Uncertainty

Reference: Langlotz, C. P. & Shortliffe, E. H. An Analysis of Categorical and Quantitative Methods for Planning under Uncertainty. 1988.

Abstract: Decision theory and logical reasoning are both methods for representing and solving medical decision problems. We analyze the usefulness of these two approaches to medical therapy planning by establishing a simple correspondence between decision theory and non-monotonic logic, a formalization of categorical logical reasoning. The analysis indicates that categorical approaches to planning can be viewed as comprising two decision-theoretic concepts: probabilities (degrees of belief in planning hypotheses) and utilities (degrees of desirability of planning outcomes). We present and discuss examples of the following lessons from this decision-theoretic view of categorical (nonmonotonic) reasoning: (1) Decision theory and artificial intelligence techniques are inteded to solve different components of the planning problem. (2) When considered in the context of planning under uncertainty, nonmonotonic logics do not retain the domain-independent characteristics of classical logical reasoning for planning under certainty. (3) Because certain nonmonotonic programming pardigms (e.g., frame-based inheritance, rule-based planning, protocol-based reminders) are inherently problem-specific, they may be inappropriate to employ in the solution of certain types of planning problems. We discuss how these conclusions affect several current medical informatics research issues, including the construction of "very large" medical knowledge bases.


Jump to... [KSL] [SMI] [Reports by Author] [Reports by KSL Number] [Reports by Year]
Send mail to: ksl-info@ksl.stanford.edu to send a message to the maintainer of the KSL Reports.